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ABSTRACT

Loess is one of the most extensive surficial
geologic deposits in midcontinental North
America, particularly in the central Great
Plains region of Nebraska. Last-glacial-age
loess (Peoria Loess) reaches its greatest known
thickness in the world in this area. New strati-
graphic, geochronologic, mineralogic, and
geochemical data yield information about the
age and provenance of Peoria Loess, as well
as evaluation of recent climate models.

Sixteen new radiocarbon ages and recently
acquired optically stimulated luminescence
ages indicate that Peoria Loess deposition
in Nebraska occurred between ca. 25,000
cal yr B.P. and ca. 13,000 cal yr B.P. After
ca. 13,000 cal yr B.P. a period of pedogenesis
began, represented by the dark, prominent
Brady Soil. At some localities, further loess

"E-mail: dmuhs @usgs.gov

deposition was minimal. At other localities,
sometime after ca. 11,000 cal yr B.P., there
were additional episodes of loess deposition
(Bignell Loess) intermittently throughout
the Holocene.

The spatial variability of particle size
abundances in Peoria Loess shows a north-
west-to-southeast fining in Nebraska, consis-
tent with maps of previous workers that show
a northwest-to-southeast thinning of loess.
These observations indicate that paleowinds
that deposited the loess were from the west or
northwest and that the source or sources of
Peoria Loess lay to the west or northwest.

New mineralogical and geochemical data
indicate that the most important sources of
loess were likely Tertiary siltstones of the
White River and Arikaree Groups, silt facies
of Pliocene eolian sediments, and small con-
tributions from Pierre Shale. It is likely that
fine-grained silts were transported episodi-
cally through the Nebraska Sand Hills from

Tertiary and Cretaceous bedrock sources to
the north, in agreement with a model pre-
sented recently. The identification of Tertiary
siltstones and silts as the primary sources
of loess is consistent with isotopic data pre-
sented in a companion paper. Contributions
of glaciogenic silt from the Platte and Mis-
souri Rivers were limited to loess zones close
to the valleys of those drainages. An earlier
computer-based model of global dust gen-
eration during the last glacial period did not
identify the Great Plains of North America as
a significant source of nonglaciogenic eolian
silt. However, a refined version of this model
does simulate this region as a significant non-
glacial dust source during the last glacial
period, in good agreement with the results
presented here.

Keywords: Peoria Loess, Nebraska, Great
Plains, last glacial period, stratigraphy, geo-
chemistry, provenance, paleoclimate.
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INTRODUCTION

Loess is an important archive of Quaternary
climate change and may provide one of the
most complete terrestrial records of interglacial-
glacial cycles (Porter, 2001; Muhs and Bettis,
2003). Because loess is eolian, it also is one
of the few geologic deposits that yield direct
records of atmospheric circulation and past
wind directions.

Loess is extensive in the Midcontinent of
North America, and Peoria Loess, of last gla-
cial age, reaches its maximum known thickness
in the state of Nebraska (Fig. 1). Despite the
importance of Peoria Loess as a surficial deposit
and soil parent material in this region, little is
known of its provenance, which is potentially
of paleoclimatic significance. Unlike Peoria
Loess found farther to the east in Iowa, Illinois,

Origin of loess in Nebraska

‘Wisconsin, Indiana, and Ohio, Peoria Loess in
the Great Plains is not close to the margins of
the Laurentide ice sheet (Fig. 1). In the eastern
parts of the North American Midcontinent, loess
has traditionally been linked to glacial sources
(Grimley, 2000). However, an obvious glacial-
source linkage is lacking in Nebraska.
Although many workers have speculated
for decades about the origin of Peoria Loess
in Nebraska (reviewed below), more recently
Mason (2001) proposed two hypotheses for its
origin, which we evaluate herein. To test these
hypotheses, we present new data on the stra-
tigraphy, sedimentology, geochronology, min-
eralogy, and geochemistry of Peoria Loess in
Nebraska. We also compare our results with a
recent dust-cycle simulation model presented
by Mahowald et al. (2006) and a recent climate
model presented by Bromwich et al. (2005). Our
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Figure 1. Distribution and thickness of loess, mostly Peoria Loess of last glacial
age, in central North America. Also shown (dashed line) is the maximum late Wis-

consin extent of the Laurentide ice she

et. Loess thickness and distribution taken

from compilation in Bettis et al. (2003a) and sources therein; Laurentide ice sheet

extent generalized from Fullerton et al.
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(2003, 2004).

results complement isotopic studies contained
in a companion paper (Aleinikoff et al., 2008).

ORIGIN OF LOESS IN NEBRASKA

Loess is widespread in Nebraska and is part
of the large belt of late Quaternary loess that
covers much of the North American Midcon-
tinent (Figs. 1 and 2). Three late Quaternary
loess units, from oldest to youngest, the Gilman
Canyon Formation, Peoria Loess, and Bignell
Loess, have been recognized in Nebraska and
other Great Plains states for six decades (Schultz
and Stout, 1945; Condra et al., 1947; Frye and
Leonard, 1951; Swinehart et al., 1994a). The
Gilman Canyon Formation is thin (usually less
than 2 m), typically has one or more paleosols
with organic-rich soil A horizons developed
within it, and is extensively burrowed (Johnson
et al., 2007). Peoria Loess overlies the Gilman
Canyon Formation and is the thickest and spa-
tially most extensive of the Great Plains loess
units. Peoria Loess is as thick as 47 m in the
western part of Nebraska and is less than 4 m
thick (or absent) in the southeastern part of the
state (Mason, 2001). In many places, Peoria
Loess is the youngest eolian silt identifiable in
the field. At other localities a buried soil with
a dark A horizon, referred to as the Brady Soil
(Schultz and Stout, 1945), is developed in the
upper part of Peoria Loess and separates this
unit from the overlying Bignell Loess. Bignell
Loess is as thick as ~6 m but is typically 1-3 m
thick (Mason et al., 2003a; Jacobs and Mason,
2007; Miao et al., 2005).

In eastern Colorado, thin, younger loess also
overlies Peoria Loess. Based on radiocarbon
ages, Muhs et al. (1999) suggested that this unit
could be slightly older than Bignell Loess at its
type locality (Bignell Hill, Nebraska), and they
informally designated the younger loess in Col-
orado as “Beecher Loess.” However, Johnson
and Willey (2000) later presented a larger age
range for the Brady Soil in Nebraska and Kan-
sas. Hence, we consider that “Beecher Loess” is
equivalent to Bignell Loess of Nebraska and rec-
ommend that the informal term be abandoned.

During the past decade, there have been a
number of efforts to refine the geochronology
of late Quaternary loess deposition on the Great
Plains. Radiocarbon, thermoluminescence (TL),
and optically stimulated luminescence (OSL)
ages indicate that the Gilman Canyon Forma-
tion dates to one or more interstadial periods
in the late Quaternary, from ca. 40,000 to ca.
25,000 “C yr B.P. (see summary in Johnson et
al., 2007). Peoria Loess was deposited during
the last glacial period (ca. 25,000 to ca. 12,000
1C yr B.P), and Bignell Loess is of Holocene
(<10,000 "“C yr B.P.) age (Pye et al., 1995; Maat
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and Johnson, 1996; Muhs et al., 1999; Johnson
and Willey, 2000; Mason and Kuzila, 2000;
Mason et al., 2003a; Roberts et al., 2003; Miao
et al., 2005; Rousseau et al., 2007).

Although the origin of Peoria Loess in the
Great Plains of Nebraska, Kansas, and Colorado
has been studied for more than six decades, at
present there is no consensus on its genesis.
As mentioned above, Peoria Loess in the Great
Plains has no clear link to outwash of the Lau-
rentide ice sheet, except possibly in that part of
Nebraska adjacent to the Missouri River. Previ-
ous workers proposed a variety of sources for
loess in the Great Plains, including Platte River
alluvium (including glacial outwash from the
Rocky Mountains); glacial outwash from the
Missouri River; sediments from the Tertiary
Ogallala, Arikaree, and White River Groups; and
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sediment from the Nebraska Sand Hills or other
dune fields (Lugn, 1939, 1968; Bryan, 1945;
Condra et al., 1947; Swineford and Frye, 1951;
Reed, 1968; Wright, 1970; Flint, 1971; Smalley,
1995; Winspear and Pye, 1995; Aleinikoff et al.,
1999; Mubhs et al., 1999).

More recently, Mason (2001) presented two
new hypotheses concerning the origin of Peo-
ria Loess in Nebraska. He infers westerly or
northwesterly paleowinds, based on his new
compilation of loess thickness data. Using pre-
liminary isotopic data presented by Aleinikoff
et al. (1998), both of Mason’s (2001) models
also assume that an important initial, or original,
source material for the Peoria Loess in Nebraska
is siltstone of the White River Group, which
crops out to the north, northwest, and west of
the Nebraska Sand Hills (Fig. 2).

In the first of these models, Mason (2001)
proposes entrainment of White River Group
sediments by wind, either directly from weath-
ered parts of the rock itself or from stream and
river valleys that drain the unit. Although coarse
silt particles from these sources would likely
be kept in suspension only for short distances,
longer-distance transport could be possible
by eolian re-entrainment through an active
Nebraska Sand Hills. In this sequence of events,
Mason (2001) envisions little or no net accumu-
lation of eolian silt in the Nebraska Sand Hills.
Instead, he views the dune field as a “surface of
transport,” where a succession of short-distance,
low-suspension transport events could have
taken place. Ultimately, therefore, even rela-
tively coarse-grained silt and fine-grained sand
could undergo a cumulative transport distance

Geological Society of America Bulletin, November/December 2008



Origin of loess in Nebraska

TABLE 1. RADIOCARBON AGES OF LATE QUATERNARY LOESS FROM NEBRASKA'

Laboratory LLNL* or UAZ® Field Locality Unit Material "“C age Error Age Error
number number number (yr) (x1s.d) (yrB.P) (£1s.d)
WW2743 CAMS-63616 NE 530-1 McCook Gilman Canyon paleosol, upper Humic acid 26,420 200 31,459 175
(0.5mg C)
WW2744 CAMS-63617 NE 530-2 McCook Gilman Canyon paleosol, middle Humic acid 26,860 210 31,812 184
(0.4 mg C)

WWwW2745 CAMS-63618 NE 530-3 McCook Gilman Canyon paleosol, lower Humic acid 32,740 250 37,716 615
WW4046 CAMS-89217 MC-22 Moran Canyon Late Holocene paleosol Humic acid 1165 45 1076 64
WW4047 CAMS-89218 MC-26 Moran Canyon  Holocene paleosol, upper Humic acid 4155 35 4714 82
WW4048 CAMS-89219 MC-27 Moran Canyon  Holocene paleosol, lower Humic acid 5580 35 6357 40
WW4049 CAMS-89220 MC-30 Moran Canyon  Brady Soil, upper Humic acid 9550 35 10,869 121
WW4050 CAMS-89221 MC-31 Moran Canyon  Brady Soil, lower Humic acid 10,600 35 12,599 38
NSRL-2954 CAMS-26399 BH-5 Bignell Hill Modern soil, upper Humic acid 1360 60 1286 40
NSRL-2955 CAMS-26400 BH-6 Bignell Hill Modern soil, lower Humic acid 1400 50 1308 29
NSRL-2804 CAMS-24344 BH-1 Bignell Hill Brady Soil, upper Humic acid 10,070 60 11,631 158
NSRL-2805 CAMS-24345 BH-2 Bignell Hill Brady Soil, lower Humic acid 10,490 60 12,483 106
NSRL-2956 CAMS-26401 BH-7 Bignell Hill Gilman Canyon, upper paleosol Humic acid 30,770 210 35,658 252
NSRL-2806 CAMS-24346 BH-3 Bignell Hill Gilman Canyon, lower paleosol Humic acid 40,600 1100 44,609 836
WW4053 CAMS-89224 DD-1 Devil's Den Holocene paleosol Humic acid 1405 35 1309 19
WW4054 CAMS-89225 DD-2 Devil's Den Brady Soil Humic acid 10,105 35 11,723 92
WW4055 AA-53370 DD-3 Devil's Den Gilman Canyon, upper paleosol Humic acid 22,680 160 27,177 189
WW4056 AA-53371 DD-4 Devil's Den Gilman Canyon, lower paleosol Humic acid 27,270 270 32,141 230
WW4051 CAMS-89222 Eustis-1 Eustis Gilman Canyon/Peoria mixing zone  Humic acid 23,870 100 28,433 136
WW4052 CAMS-89223 Eustis-2 Eustis Gilman Canyon paleosol Humic acid 28,100 200 32,808 180
WW2099 CAMS-51545 EL-12A Elba Gilman Canyon paleosol, upper Humic acid 24,940 90 29,930 334
WW2100 CAMS-51546 EL-13A Elba Gilman Canyon paleosol, lower Humic acid 24,000 80 28,570 118
NSRL-1479 CAMS-10188 Bellevue Lower Peoria, 38 cm above contact Humic acid 22,210 170 26,681 193
NSRL-1478 CAMS-10187 Bellevue Lower Peoria, 36 cm above contact Humic acid 21,810 160 26,260 177
NSRL-1480 CAMS-10186 Bellevue Lower Peoria, 32 cm above contact Humic acid 22,040 160 26,501 181
NSRL-1481  CAMS-10190 Bellevue Gilman Canyon paleosol Charcoal 25,340 260 30,538 341

TAll ages are from this study except for Bignell Hill (Muhs et al., 1999) and Bellevue (Mandel and Bettis, 1995), but both sets are recalibrated here.

‘Lawrence Livermore National Laboratory.
SUniversity of Arizona.

“Calibrated” ages of all radiocarbon ages are from Fairbanks et al. (2005). Error estimates for “calibrated” ages from Fairbanks et al. (2005) are considered

to be unrealistically precise (see text for discussion).

of hundreds of kilometers before deposition.
Mason et al. (1999) had earlier hypothesized
the importance of actively moving sand in the
Nebraska Sand Hills for entrainment of silt par-
ticles and eventual deposition as loess to the
southeast of the dune field in Nebraska. Mason
et al. (2003a) applied this model to explain the
origin of Holocene Bignell Loess in Nebraska.
Mason’s (2001) second hypothesis requires
that silt-sized particles from the White River
Group were initially transported to central
Nebraska prior to Peoria Loess deposition,
perhaps even in the Pliocene. Swinehart et al.
(1985) show that Pliocene sediments are exten-
sive in Nebraska and underlie parts of the Sand
Hills region, to the northwest of Peoria Loess
in the area. Some of these Pliocene sediments
are part of an eolian sand sheet (Myers, 1993;
Swinehart et al., 1994b) and are silt-rich in
places (Fig. 2). If the White River Group pro-
vided the sediments for the fine-grained facies
of the Pliocene deposits, then re-entrainment
of Pliocene silts by wind during the last glacial
period would have required a shorter distance of
transport to the southeast to form the extensive
Peoria Loess belt in Nebraska. Although not
stated explicitly by Mason (2001), this model
requires that silt-rich Pliocene sediments must
have been exposed at the surface during the last
glacial period, when Peoria Loess was accumu-
lating in Nebraska. Because Holocene dune sand
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of the Nebraska Sand Hills presently overlies
most of the silt-rich Pliocene sediment (Fig. 2),
this second model requires that (1) the Nebraska
Sand Hills did not exist in its present form dur-
ing the last glacial period, and/or (2) Pliocene
sediments provided the source sediment for
both the Nebraska Sand Hills and Peoria Loess
(J. Mason, May 2007, written commun.).

METHODS

Peoria Loess from shallow depths in
Nebraska was examined and collected from
road cuts, natural exposures, and auger borings
at 75 localities for particle size, mineralogy,
and geochemistry (Fig.2). Potential bedrock
sources for loess were also collected, includ-
ing Pierre Shale, the White River Group, the
Arikaree Group, and the silt facies of eolian
sheet-sand sediments (Pliocene), from locali-
ties in Colorado, Wyoming, Nebraska, and
South Dakota. Pierre Shale is a gray, bentonitic
shale, with some siltstone, and is of Cretaceous
age. The White River Group is white to light
brown, mostly volcaniclastic siltstone, with
some claystone and sandstone, of Oligocene
to Eocene age. The Arikaree Group is siltstone
and sandstone, mostly volcaniclastic, of Mio-
cene and Oligocene age. Samples of eolian sand
from ~60 localities within the Nebraska Sand
Hills, studied previously by Muhs et al. (1997,

2000), were analyzed for mineralogy and geo-
chemistry. Fine-grained overbank sediments
from the modern floodplain of the South Platte
River were collected in Colorado at localities
identical to those in Muhs et al. (1999). Peo-
ria Loess stratigraphy was studied and samples
collected at nine sections across Nebraska and
two new sections in adjacent Iowa and Colo-
rado (Fig. 2).

At several loess sections in Nebraska, sam-
ples of paleosols were collected for radiocar-
bon dating. Radiocarbon ages were determined
on humic acid extractions from organic matter
in paleosols, following methods outlined by
McGeehin et al. (2001). Radiocarbon abundance
was measured by accelerator mass spectrometry
(AMS) at Lawrence Livermore National Labo-
ratory. Radiocarbon ages were converted to
approximate calendar-year ages (Table 1), using
Fairbanks et al. (2005). We note, however, that
this calibration curve, especially for calibrated
ages >26,000 yr, has not received universal
acceptance in the geochronology community.
Additionally, the calibrated ages are given
with a 1 sigma error, which we feel is too pre-
cise given the sample materials and processing
employed. Hence, we consider these converted
ages as estimates and refer to them in this docu-
ment without error estimates.

Particle size analysis of loess and paleosols
was conducted by a combination of sieve and
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pipette methods (see GSA Data Repository").
Samples were pretreated with H,O, to destroy
organic matter, HCI to remove carbonates, and
Na-hexametaphosphate to enhance dispersion.
Sands (particles with diameters >53 pum) were
separated from silts and clays by wet-sieving;
abundances of coarse silts (53-20 um), fine silts
(20-2 pm), and clays (<2 um) were determined
by settling and pipette analysis. Laboratory preci-
sion for pipette analysis was routinely monitored
with each suite of sample runs by analysis of an
Iowa loess standard maintained by the Depart-
ment of Agronomy, lowa State University.

All loess samples collected for mineralogy
and geochemistry were taken below the pri-
mary zone of pedogenesis, usually at depths of
~2-3 m. The relative abundance of minerals in
powdered samples was determined by measur-
ing X-ray-diffraction (XRD) peak intensities
(heights) as follows: quartz, 20.8°; K-feldspar,
27.4°; plagioclase, 27.8°; calcite, 29.4°; dolo-
mite, 30.9° (all 2 theta). Clay mineralogy by
XRD was determined on selected samples on
oriented air-dry, glycolated, and heat-treated
slides (550 °C for 1 h).

Chemical analyses of loess were conducted on
bulk samples (i.e., no pretreatments other than
pulverization) and therefore include carbonates.
For chemical analyses of potential loess source
materials with significant amounts of gravel and
coarse to medium sand, samples were treated
with H,O, to remove organic material and Na-
hexametaphosphate for dispersal of fine grains.
Dispersed samples were then passed through a
125-pum sieve to remove all gravel and all but the
finest sand fraction; material passing through the
sieve was then pulverized and analyzed for chem-
ical composition. The finest sand fraction was
retained for analysis because particle size analy-
ses (discussed below) indicate that Peoria Loess
in Nebraska has significant amounts of fine sand.
This procedure was applied to South Platte River
sediments, tills, Pliocene eolian sediments, and
silt-rich sediments of the Arikaree Group. Sam-
ples of the Nebraska Sand Hills, the White River
Group siltstone, and Pierre Shale contain little
or no gravel or coarse sand and were analyzed
as bulk sediments. Major element geochemistry
for Peoria Loess in Nebraska was determined by
wavelength-dispersive X-ray fluorescence (WD-
XRF). WD-XRF was also used for trace element
geochemistry in our comparison of “northern”
versus “southern” Peoria Loess in Nebraska.
For provenance studies we also utilized certain

!GSA Data Repository Item 2008084, Peoria
Loess and sources—geochemical and particle size
data, is available at www.geosociety.org/pubs/
ft2008.htm. Requests may also be sent to editing@
geosociety.org
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key trace elements (Rb and Nb), and the major
elements for which they substitute (K and Ti,
respectively), in order to calculate K/Rb and Ti/
Nb values. These four elements were measured
by energy-dispersive X-ray fluorescence (ED-
XRF). Estimates of carbonate content were made
on selected samples using a Chittick apparatus,
following the method outlined by Dreimanis
(1962). Dissolution was accomplished using 6N
HCI and a 5 min reaction time, which measures
calcite but not dolomite.

STRATIGRAPHY AND
GEOCHRONOLOGY OF LOESS IN
NEBRASKA

Sixteen new AMS radiocarbon ages, pre-
sented here, combined with previously reported
radiocarbon ages (Mandel and Bettis, 1995;
Muhs et al., 1999) and OSL ages recently
reported by Roberts et al. (2003) and Mason et
al. (2003a), have allowed us to infer the chronol-
ogy of loess deposition at sections we studied in
Nebraska (Table 1; Figs. 3-10). The mid-Wis-
consin interstadial complex, represented by the
Gilman Canyon Formation loesses and paleo-
sols, apparently was a period of some complex-
ity, with alternating episodes of loess or eolian
sand deposition and soil formation (see also
Johnson et al., 2007). Ages of the uppermost
Gilman Canyon Formation paleosols at Bignell
Hill, Devil’s Den, Eustis, McCook, and Elba
give maximum-limiting ages for the initiation
of Peoria Loess deposition in western and cen-
tral Nebraska (Figs. 3-8). The youngest radio-
carbon ages of the Gilman Canyon Formation
differ from section to section, but it is not clear
whether this is a time-transgressive pattern, the
approximate nature of humic acid radiocarbon
ages, or erosion of parts of some sections. At
Bignell Hill and McCook the uppermost parts
of the Gilman Canyon Formation paleosols have
ages of 35,000-31,000 cal yr B.P. (Table 1). At
Eustis, Devil’s Den, and Elba, maximum-lim-
iting ages are ca. 30,000-27,000 cal yr B.P. At
Bellevue, near Omaha, humic acid extractions
from organic-rich zones within the lowermost
Peoria Loess indicate that eolian deposition in
eastern Nebraska was in progress sometime after
ca. 26,000 cal yr B.P. (Fig. 10; see also Mandel
and Bettis, 1995). We infer that the organic-rich
zones at Bellevue are eroded soil A horizons,
derived from higher slope positions and moved
downslope by solifluction. Thus, the organic-
rich zones are interpreted to be somewhat older
than the enclosing loess.

OSL ages reported by Roberts et al. (2003)
are consistent with both new and previously
reported radiocarbon ages for the time of initial
Peoria Loess deposition. In western Nebraska,

Roberts et al. (2003) report that the earliest
Peoria Loess deposition was in progress by ca.
25,000 cal yr B.P. at Bignell Hill, ca. 20,700 cal
yr B.P. at Eustis, and ca. 18,400 cal yr B.P. at
Devil’s Den (Figs. 3, 4, 7). All these ages post-
date the youngest radiocarbon ages of the under-
lying Gilman Canyon Formation paleosols at
each locality. OSL ages at Eustis (Roberts et
al., 2003) agree reasonably well with new OSL
data for this section reported by Rousseau et al.
(2007).

Peoria Loess deposition ended sometime
between ca. 14,000 and 12,000 cal yr B.P,
based on the uppermost Peoria Loess OSL ages
reported by Roberts et al. (2003) and radio-
carbon ages of the Brady Soil at Bignell Hill,
Devil’s Den, and Moran Canyon (Table 1;
Figs. 3-6). Our ages of the lowermost Brady
Soil (ca. 13,800 to ca. 11,700 cal yr B.P.), mini-
mum times for the termination of Peoria Loess
deposition, agree closely with those reported
for Bignell Hill, Devil’s Den, and other locali-
ties by Johnson and Willey (2000), Mason
et al. (2003a), and Miao et al. (2005, 2007). At
Bignell Hill, Devil’s Den, and Moran Canyon
(Figs. 3-6) the Brady Soil is well expressed
morphologically, with an A/Bk1/Bk2/C horizon
sequence (for detailed descriptions and inter-
pretation of the Brady Soil at other localities,
see Jacobs and Mason, 2007). Modern surface
soils at these localities are not as well developed
as the Brady Soil. At other localities, such as
McCook, Eustis, Elba, Lincoln, and Bellevue,
the Bignell Loess and the Brady Soil are absent,
and the modern soil is developed in the upper-
most Peoria Loess.

After formation of the Brady Soil, renewed
loess deposition occurred in Nebraska during
the Holocene. At Moran Canyon, there were
three episodes of loess deposition following
formation of the Brady Soil (Figs. 5, 6), at ca.
11,000-6300, 4700-1100, and 1100-0 cal yr
B.P. These bracketing radiocarbon ages are in
excellent agreement with OSL ages of the loess
itself of ca. 8800, ca. 2600, and ca. 680 cal yr
B.P,, respectively (Mason et al., 2003a). At
Devil’s Den, there were at least two episodes of
Holocene loess deposition, between ca. 11,700
and 1300 cal yr B.P. and since 1300 cal yr B.P.
(Fig. 4). In contrast, only one episode of Holo-
cene loess deposition is found at Bignell Hill
(Fig. 3). In southwestern Nebraska, Mason et al.
(2003a) and Miao et al. (2005) show that Holo-
cene loess is thickest near the Nebraska Sand
Hills and smaller dune fields found to the south-
west. Bignell Loess is thinnest or is not apparent
at localities far to the southeast of these dunes.
Jacobs and Mason (2007) propose that the
expression of distal Holocene loess in Nebraska
is silty A horizons over clayey B horizons in
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modern soils; the latter are former Brady Soil
A horizons. Their observations agree with those
made in the present study, as no Holocene loess
is visible in the field at the Eustis, McCook,
Elba, Lincoln, Bellevue, and Plattsmouth locali-
ties, which are farthest from any dune fields.

PEORIA LOESS SEDIMENTOLOGY

PeoriaLoess, collected in the upper few meters
at ~75 localities across Nebraska (Fig. 2), has
particle size distributions (shown in Fig. 11 on
a sand-free basis) that are typical of loess found
in other regions. On a sand-inclusive basis, all
but a few samples are >60% silt, although most
are <80%. The coarse silt content (53-20 um)
for most samples ranges from 45% to 65%, and
the fine silt content (20-2 pm) for most samples
ranges from 15% to 30%. The clay content (<2
um) is in all cases <30%, and most samples
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have <20%. The sand content (>53 um) for most
samples is <30%.

Maps of particle size class abundance, hand-
contoured from individual sample localities,
show that the sedimentology of Peoria Loess in
Nebraska has a systematic geographic variation.
The sand content decreases to the southeast,
away from the Nebraska Sand Hills (Fig. 12A).
In contrast to sand, fine silt and clay show
increases to the southeast of the Nebraska Sand
Hills (Figs. 12B and 12C). The particle size
trends are consistent with data from Mason et al.
(2003b) and parallel the loess thickness contours
of Swinehart et al. (1994a) and Mason (2001).

All three particle size maps display anoma-
lous points with regard to the contoured values
(Figs. 12A-12C). Positive anomalies—localities
with contents higher than the contoured val-
ues—are found mainly on the sand content map
only along the Platte River in eastern Nebraska.

On the maps showing fine silt and clay contents,
anomalies are mostly negative and many of
them are the same localities as those that show
positive sand content anomalies. The proximity
of these anomalous localities to the Platte River
suggests a local input of coarse grains from the
river valley that is superimposed on a regional
northwest-to-southeast fining trend. This inter-
pretation is consistent with anomalous thick-
ness measurements adjacent to the Platte River
(Mason, 2001).

Detailed particle size analyses of two sec-
tions (Bignell Hill and Eustis) illustrate broad
similarity in particle size over the course of
Peoria Loess deposition. At Bignell Hill, sand
content in Peoria Loess varies between ~20%
and ~52%, although most samples are between
~30% and ~40% (Fig. 13A). This size distribu-
tion is consistent with the overall spatial trend
that shows Bignell Hill approximately at the
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Figure 6. Stratigraphy, OSL and calibrated radiocarbon ages (yr B.P.) (sources as in Fig. 5), Fe,O, and Mn con-
tents (as proxies for fine-grained particles) and K/Rb at Moran Canyon, Nebraska. Also shown is range of K/Rb
for loess sources; all geochemical data are from this study. Section shown is a composite of trench 1 and trench 2

samples as shown in Figure 5.

40% sand contour line in Figure 12A. The silt
content in Peoria Loess at Bignell Hill ranges
from 37% to 66%, although most depths have
50%—-60% silt.

At Eustis the particle size throughout Peoria
Loess is finer grained than at Bignell Hill. The
sand content, with one exception, is lower than
that at Bignell Hill and varies between 11% and
34%, with most depths between 11% and 25%
(Fig. 13B). This variation is consistent with the
regional trend, where Eustis falls approximately
on the 20% sand content contour in Figure 12A.
The silt content is higher than that at Bignell
Hill, between 54% and 76% (one sample is
48%). Particle size data presented here for Eustis
are in broad agreement with those of Rousseau
et al. (2007), although methods and particle size
classes differ.

MINERALOGY OF PEORIA LOESS IN
NEBRASKA

Bulk mineralogical analyses of upper Peo-
ria Loess were determined from about three
dozen localities across the east-west extent of
Nebraska, on both sides of the Platte River, and
at multiple depths in four sections (Bignell Hill,
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Devils Den, Eustis, and Plattsmouth). Results
indicate a composition similar to loess from
other regions (Pye, 1987). Quartz and plagio-
clase are present in all samples, and most also
contain mica, calcite, and dolomite. More than
half the samples analyzed contain detectable
K-feldspar, and a few samples have detectable
amounts of chlorite and amphibole. Peoria Loess
in Nebraska can be compared with loess from
other regions of North America (Illinois and
Alaska), as well as potential source sediments,
using ternary diagrams of XRD peak heights,
which are measures of relative mineral abun-
dance (not mass fractions). In this method, each
mineral component is arrayed as a percentage of
the sum of the three components in the diagram.
The main difference between North American
loesses we studied is carbonate mineral (calcite
and dolomite) content, which is high in Peoria
Loess from Illinois, has intermediate values in
Nebraska, and is low in Alaska (Fig. 14).

Loess from Nebraska does not have a clear
mineralogical overlap with any single source
sediment when comparisons are made using
ternary diagrams (Fig. 14). Many loess samples
show overlap with sediments of the White River
Group and Pierre Shale, but individually neither

of these sources shows complete agreement
with Peoria Loess. A lack of carbonates in sedi-
ments of the Nebraska Sand Hills results in a
minimal overlap with the array of Peoria Loess
samples from Nebraska. Although we have
observed secondary carbonate streaks, nodules,
and rhizoliths in some beds of the Pliocene sedi-
ments, we detected little or no calcite in the silt-
rich zones analyzed here (Fig. 14).

XRD analysis of oriented clays shows that
Peoria Loess in both eastern and western
Nebraska has a clay mineralogy dominated by
smectite (Fig. 15). Smaller amounts of mica,
kaolinite, and/or chlorite are also present.
Quartz is present in the clay fraction, but there is
no evidence of significant amounts of clay-sized
feldspar. The clay mineral suite of Peoria Loess
in Nebraska is similar to that of Peoria Loess in
western lowa.

Some of the mineralogical variability we
observed in Peoria Loess in Nebraska is a func-
tion of carbonate mineral content. Calcite and
dolomite can easily be identified by XRD analy-
sis, and quantitative estimates can be made using
CaCO, content with a Chittick apparatus (cal-
cite) and measurements of CaO and MgO con-
tent by XRF analysis (calcite and dolomite, plus
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other Ca-bearing minerals), as well as loss-on-
ignition (LOI) at 900 °C (mostly CO, loss from
carbonate minerals, with lesser amounts from
structural H,O and organic matter). Although
CaCO, content from a Chittick apparatus is a
direct measure of calcite, it does not include
dolomite in a 5 min reaction procedure. Fur-
thermore, we found that this method has large
uncertainties and poor reproducibility when car-
bonate contents are relatively low, as they are
with Peoria Loess in Nebraska. CaO and MgO
contents by XRF are accurate and precise and
can reflect the presence of both calcite and dolo-
mite. These elements also reflect the abundance
of other Ca- and Mg-bearing minerals, if pres-
ent. Nevertheless, carbonates are the dominant
Ca-bearing minerals at Eustis and Plattsmouth,
where all carbonate proxies (CaCO,, CaO +
MgO + LOI, and calcite + dolomite/quartz peak-
height ratio) parallel one another (Fig. 16).

A distinctive trend at Eustis is that all car-
bonate mineral proxies show general increases
upsection. These carbonate trends parallel the
upsection increase in mass accumulation rates
(MAR) (Fig. 16). Our interpretation is that dur-
ing periods of relatively low sedimentation rates,
climatic conditions were humid enough that syn-
depositional leaching could take place. During
periods of higher sedimentation rates, loess accu-
mulation proceeded rapidly enough that synde-
positional carbonate leaching was precluded.

GEOCHEMISTRY OF PEORIA LOESS IN
NEBRASKA

Major Element Geochemistry of Peoria
Loess in Nebraska

Major element geochemistry of sediments is
conveniently portrayed using ternary diagrams.
One approach eliminates elements (AlO,
and Fe,0,) dominated by clay minerals and
emphasizes the relative abundance of quartz
(Si0,), feldspar plus mica (Na,0O + K,0), and
the carbonate minerals, calcite-plus-dolomite
(CaO + MgO). Another method is to eliminate
the main proxy for quartz (SiO,) and substitute
elements that represent the relative abundance
of clay minerals (ALO, and Fe,O,). Trace ele-
ments that substitute for major elements in the
feldspars and micas (Ba, Rb, Sr) can also be
used to characterize a sediment body, as well
as trace elements that are enriched in the heavy
mineral suite (Zr, Y, Nb).

Because loess in Nebraska is found both
north and south of the Platte River system, a
question that has arisen is whether the two loess
bodies are compositionally distinct (Winspear
and Pye, 1995; Muhs et al., 1999). We analyzed
two suites of Peoria Loess samples, on both
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sides of the river system. Major element plots,
both (Si0,)/10~(CaO + Mg0)-(Na,O + K,0)
and (ALO, + Fe,0,)/2-(Ca0 + Mg0)-(Na O +
K,0), are in agreement with Winspear and Pye
(1995) that loess bodies north and south of the
Platte River system are compositionally similar

(Fig. 17). Trace element plots for Ba/10-Rb-Sr
(feldspars and micas) and Zi/10-Y-Nb (heavy
minerals) also show that the two loess bodies are
not significantly different. Peoria Loess from
eastern Colorado, taken from a newly sampled
5-m-thick section near Fort Morgan (Fig. 2) is
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not significantly different from either loess body
in Nebraska (Fig. 17).

Ternary diagrams of major elements can be
used to evaluate potential source sediments for
Peoria Loess in Nebraska. A plot of (SiO,)/10-
(ALO, + Fe,0,)2-(Na,0 + K,0) shows that
Peoria Loess is closest to the White River Group
(Fig. 18C). However, this interpretation must
be used with caution, because clay-related ele-
ments (ALO, and Fe,0,) are much lower in
the dune sediments and much higher in Pierre
Shale. However, a (SiO,)/10~(CaO + MgO)-
(Na,0 + K,0) diagram includes elements that
do not have such a distinctive bias toward parti-
cle size. Using this plot (Fig. 18A), Peoria Loess
in Nebraska overlaps Pierre Shale and White
River Group sediments but is distinct from the
Nebraska Sand Hills or dunes in Colorado, which
lack significant amounts of carbonate minerals.
The (Si0,)/10-(Ca0 + MgO)—-(Na,0 + K,0)
diagram suggests that Peoria Loess could have
been derived from a mixture of White River
Group and Pierre Shale sediments.

Using the same major element ternary dia-
grams, differences between the compositions
of loesses from widely separated regions can
be recognized easily. Loess from New Zealand
has a low carbonate (CaO + MgO) content and
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a high feldspar (Na,0 + K,O) content, prob-
ably from volcanic sources (Fig. 18B). In con-
trast, loess from Illinois has a relatively high
carbonate content (reflecting calcite-rich and
dolomite-rich outwash sources) and a relatively
low feldspar content. Peoria Loess in Nebraska
falls closest to the composition of Alaskan loess.
A plot of (Si0,)/10~(Al1,0, + Fe,0,)/2-(Na,O +
K,0), which omits the carbonate mineral proxy
(CaO + MgO), also shows loess differences
from region to region. In this array, Peoria Loess
in Nebraska has little overlap with loesses from
other areas (Fig. 18D).

Use of K/Rb and Ti/Nb as Provenance
Indicators

Ratios of geochemically similar major and
trace elements in minerals can be useful in sedi-
ment provenance studies. For example, Rb sub-
stitutes for K in minerals such as K-feldspars
and micas. Owing to lattice constraints and ionic
radii, Rb is incorporated more easily in micas
(muscovite, biotite, illite) than in K-feldspars
(Heier and Adams, 1964; Lange et al., 1966).
Thus, K/Rb is lower in micas than in K-feld-
spars. Two other elements we examined as prov-
enance indicators are Ti and Nb. Although Ti is

found in low concentrations in a few primary
minerals (e.g., biotite, hornblende, zircon), itis a
major constituent in sphene, ilmenite, and rutile
(Parker and Fleischer, 1968). Niobium com-
monly substitutes for Ti and thus Ti/Nb ratios
will vary primarily with the mineralogy and
source rocks of Ti-bearing heavy minerals.

In using geochemistry for sediment prov-
enance studies, there is a possibility of mineral
size—partitioning bias, with the result that par-
ticular elements are concentrated in certain size
fractions (Shilts, 1993). In our study, however,
neither K or Rb concentrations nor element
ratios are correlated with any size fraction, so
we conclude there is little or no particle size
bias. Ti shows a modest (1> = 0.37) positive lin-
ear correlation with clay content, but not with
other particle size classes. Nb shows no correla-
tion with any particle size class.

K/Rb and Ti/Nb have not been used exten-
sively in provenance studies for eolian sedi-
ments. Therefore, we explore here whether
these element ratios can distinguish loesses
derived from different sources. We selected
loess samples of approximately the same age
from China and different regions of North
America, including Alaska, Colorado, Kansas,
and northwestern lowa.
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Because Peoria Loess from northwestern
Iowa is compared in detail with Peoria Loess
from Nebraska, a brief description of a new
loess section studied is provided here. We sam-
pled a 30-m-thick exposure of Peoria Loess at a
locality called Sergeant Bluff, near Sioux City,
Woodbury County, Iowa (Fig. 19). Peoria Loess
in this section is unleached, and the lower ~15
m of the section shows laminations. The locality
is situated where the Missouri River was almost
certainly the primary source of sediment. This
interpretation is supported by the high contents
(60%—73%) of coarse silt in the loess (Fig. 19),
suggesting a short distance of transport. The
James Lobe and Des Moines Lobe (Figs. 1 and
2) of the Laurentide ice sheet provided silt-rich
outwash to the Missouri River. Tills from these
two glacial lobes are derived from Cretaceous
shale and limestone, Paleozoic limestone and
dolomite, and Precambrian crystalline rocks
traversed by the Laurentide ice sheet in the
northern United States and Canada (Hallberg
and Kemmis, 1986). We sampled basal tills of
the James Lobe in South Dakota and the Des
Moines Lobe in Iowa and separated the <125
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um fraction for geochemical analyses. Both K/
Rb and Ti/Nb indicate that the Peoria Loess at
Sioux City is derived ultimately from Lauren-
tide ice sheet tills via deflation from the Mis-
souri River Valley (Fig. 19).

Results of the regional loess comparison show
that K/Rb and Ti/Nb can distinguish loesses
from diverse source areas (Figs. 20A and 20B).
Loess from eastern Colorado and northern Kan-
sas show compositional similarities. However,
loess from Colorado and Kansas is distinguished
from Chinese loess by lower Ti/Nb. The three
Alaskan loess groups have higher Ti/Nb than
loess from Colorado, Kansas, and Iowa. In addi-
tion, the Alaskan loesses have K/Rb that differ
from one another. We conclude from this simple
test that K/Rb and Ti/Nb, though not perfect, are
useful provenance indicators for loess.

There are distinct differences in K/Rb
between some of the potential sources of Peoria
Loess in Nebraska (Figs. 20C-20F). High K/Rb
values in the Nebraska Sand Hills and Colorado
dunes likely represent the dominance of K-feld-
spar over mica in the K-mineral suites of these
sediments. Distinct K/Rb values are also found

for the two fluvial sediment groups, South Platte
River sediments and Missouri River sediments
(as proxied by western Iowa loess at Sioux City).
Pierre Shale has relatively low K/Rb, distinct
from Pliocene eolian sediments, which probably
reflects a higher mica content in the shale. How-
ever, Pliocene eolian sediments, Arikaree Group
sediments, and White River Group sediments all
have similar K/Rb.

The various source sediments have fewer dif-
ferences in Ti/Nb values (Figs. 20C-20F). The
White River Group, Arikaree Group, Pierre
Shale, Pliocene eolian sediments, and Colorado
dune sands all have overlapping Ti/Nb. How-
ever, South Platte River sediments have gener-
ally lower Ti/Nb, mostly between 100 and 200.
Missouri River sediments (proxied by Iowa
loess) have more variable but generally higher
Ti/Nb. Because Nb concentrations are near the
detection limit of the ED-XRF method in the
Nebraska Sand Hills sediments, we do not cal-
culate Ti/Nb for these eolian sands.

Most samples of Peoria Loess in Nebraska
have K/Rb between 200 and 250, and Ti/Nb
between ~200 and 300 (Fig. 20). A comparison
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of K/Rb values suggests that the Nebraska
Sand Hills are not a likely sole source for Peo-
ria Loess (Fig. 20). Although Peoria Loess has
some overlap with the South Platte River sedi-
ments, there is almost no overlap with Missouri
River—derived silts (Iowa loess), which have K/
Rb ratios between 265 and 311. Some Pierre
Shale samples have Ti/Nb similar to Peoria
Loess in Nebraska but also have K/Rb that are
too low. However, Peoria Loess overlaps the
fields defined by K/Rb and Ti/Nb for the White
River Group, Arikaree Group, and Pliocene
eolian sediments. A simple interpretation is that
these latter three sediments are the most likely
candidates for the dominant sources of Peoria
Loess in Nebraska. However, it is also possible
that mixtures of geochemically distinct source
sediments can explain the compositional varia-
tion of the loess, a possibility we discuss below.

K/Rb and Ti/Nb in sections across an east-west
distance of ~350 km in Nebraska suggest that
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compositions of Peoria Loess have changed very
little, if at all, over the last glacial period (Figs. 3,
4, and 6-10). At Bignell Hill and Devils Den, K/
Rb at most depths is ~250 or slightly lower, which
falls within the range of the White River Group,
Arikaree Group, Pliocene beds, and sediments
of the South Platte River, but outside that of the
Nebraska Sand Hills (Figs. 3, 4). Exceptions to
this are sandy zones, prominent at ~42 m depth
at Bignell Hill and ~30 m and ~37 m depths at
Devils Den, where K/Rb values are higher. The
same is true for eolian sand that underlies Peoria
Loess at Moran Canyon, at depths below 1300
cm (Fig. 6). Ti/Nb in Peoria Loess at Bignell
Hill is higher than that of sediments of the South
Platte River but within the ranges of the White
River Group, Arikaree Group, and Pliocene
eolian sediments. At Eustis and McCook, K/Rb
is almost monotonic with depth and is similar
to that at Bignell Hill (Fig. 7). All K/Rb values
at Eustis and McCook fall within the middle of

Figure 13. Stratigraphy, OSL and calibrated radiocarbon ages (yr
B.P.), and sand, fine silt, and clay content at Bignell Hill (A) and

the range of values for the White River Group,
Arikaree Group, Pliocene eolian sediments, and
South Platte River sediments. Ti/Nb values at
Eustis and McCook are more variable with depth
than K/Rb, but all values fall within the range
of the White River Group, Arikaree Group, and
Pliocene eolian sediments.

The sections at Elba and Lincoln allow us to
evaluate the composition of Peoria Loess over
time in the central and eastern parts of Nebraska
(Figs. 8, 9). These sections were originally
described by May et al. (1995) and Mandel and
Bettis (1995). Both sections have thinner Peoria
Loess than the localities farther west. In fact, the
modern soil in the main section at Elba is clearly
eroded when compared with a more stable
locality a few hundred meters away (Fig. 8). At
both sections, K/Rb values in Peoria Loess do
not differ significantly from the range of values
found in the stratigraphic sections farther west.
Furthermore, K/Rb values in both sections are
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also monotonic with depth, as is the case far-
ther west, and fall in the middle of the range of
compositions for the White River and Arikaree
Groups, Pliocene eolian sediments, and South
Platte River sediments, but outside the range for
Missouri River silt (as proxied by western lowa
loess). Peoria Loess at Lincoln has Ti/Nb values
that are more variable with depth than K/Rb,
and some values fall within the range of lowa
loess and till. The higher Ti/Nb values may be a
function of the slight Ti bias with particle size,
as loess in this area is clay-rich (Fig. 12C).
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From all the K/Rb and Ti/Nb data, both from
shallow samples across much of Nebraska and
the stratigraphic sections from Bignell Hill to
Lincoln, the simplest explanation is that the most
likely source sediments for the Peoria Loess are
the Tertiary sedimentary rocks. This includes
the White River Group, Arikaree Group, and
silt facies of Pliocene eolian sheet-sand sedi-
ments. A combination of other, more geochemi-
cally distinct source sediments, such as South
Platte River sediments mixed with dune sand
of the Nebraska Sand Hills, could also explain

the composition of the Peoria Loess. However,
it seems less likely that such mixtures would
result in the monotonic K/Rb depth trends
found at so many stratigraphic sections (Bignell
Hill, Eustis, McCook, Elba, and Lincoln) over
an east-west distance of hundreds of kilome-
ters. Such an explanation would also require a
rather complex shift of winds on both a short-
term and long-term basis. For example, because
Devils Den and Elba are situated north of the
Platte River system, a mixture of river sediment
and dune sand from the Nebraska Sand Hills
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would require alternations of northwesterly
winds to provide dune sand from the Nebraska
Sand Hills and southeasterly winds to provide
river sediment from the Platte River Valley. The
particle size data presented earlier argue against
such a sequence of events.

Peoria Loess Localities near the Missouri
River in Nebraska

An important question for loess origins and
paleowinds is whether the Missouri River Val-
ley served as a significant source of loess in
Nebraska, because this river drained the Lau-
rentide ice sheet. The Missouri River Valley
borders northeastern and eastern Nebraska
(Fig. 2). Mason (2001) and Mason et al. (2007)
point out that in northeastern and east-central
Nebraska, there is a narrow (<25 km) zone of
westward-thinning loess, also apparent in the
data of Swinehart et al. (1994a). Mason (2001)
suggests that these trends could be the result
of loess derivation from the Missouri River
floodplain, perhaps from infrequently occurring
easterly winds, an idea also proposed by Flint
(1971) and Handy (1976).

In order to test the hypothesis of Missouri
River contributions to loess in eastern Nebraska,

Geological Society of America Bulletin, November/December 2008

we examined two sections near Bellevue and
Plattsmouth, both ~1 km west of the Missouri
River (Fig.2). K/Rb values in Peoria Loess
at both Bellevue and Plattsmouth fall mostly
within the range of values for the White River
Group and outside the range of values for west-
ern Iowa loess and Laurentide ice sheet tills of
South Dakota and Iowa (Fig. 10). White River
Group sediments and western Iowa loess and
Laurentide tills show considerable overlap in
their ranges of Ti/Nb. Thus, Ti/Nb is less useful
as a provenance indicator in comparing these
two source sediments. Unfortunately, loess
composition at both Bellevue and Plattsmouth
falls mostly within the area of overlap of Ti/
Nb for White River Group sediments and west-
ern lowa loess, so our interpretations are not
definitive. Nevertheless, Ti/Nb values at both
Bellevue and Plattsmouth are higher (~300)
than is typical for loess in central and western
Nebraska. This observation permits an inter-
pretation that some part of the heavy mineral
fraction could have been derived from a local
Missouri River source.

The amount of influence of the Missouri
River on Peoria Loess in Nebraska can also be
examined with a north-south transect (Fig. 2).
In this transect, K/Rb decreases southward

systematically, away from the Missouri River
(Fig. 21). In addition, the northernmost locali-
ties in this transect have K/Rb values that fall
within the range of northwestern Iowa loess,
whereas those greater than 30 km south of the
Missouri River do not. Ti/Nb values, although
less definitive, are consistent with this trend.
Carbonate mineral abundances (relative to
stable quartz), plus geochemical proxies for
calcite and dolomite (CaO + MgO + LOI),
decrease with distance south of the river. In
particular, localities within ~30 km of the Mis-
souri River show carbonate values within the
range of western Iowa loess, and higher values
than those in the Peoria Loess of central and
western Nebraska (Fig. 21). These trends per-
mit an interpretation of Missouri River influ-
ence on loess composition within ~30 km of
the river, at least for some minerals such as
micas, feldspars, and carbonates. This inter-
pretation is consistent with thickness observa-
tions made by Mason (2001) and Mason et al.
(2007) and isotopic compositions reported by
Aleinikoff et al. (2008). However, because of
where our transect is located (Fig. 2), our only
possible paleowind interpretation is that loess-
transporting winds had a northerly component
(northwest, north, or northeast).
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DISCUSSION

Chronology of Peoria Loess Deposition in
Nebraska

The radiocarbon ages presented here, along
with radiocarbon and OSL ages reported ear-
lier by Mandel and Bettis (1995), Muhs et al.
(1999), Johnson and Willey (2000), Roberts et
al. (2003), and Mason et al. (2003a), allow us
to infer the timing of Peoria Loess deposition
in Nebraska. At widely separated localities in

1396

Nebraska, earliest Peoria Loess deposition began
ca. 26,000-25,000 cal yr B.P. It is possible that
the start of Peoria Loess deposition occurred
later at some localities (Eustis and Devils Den).
An alternative explanation is that these sections
underwent some erosion of earliest Peoria Loess
in their lower parts before later Peoria Loess
deposition. In any case, OSL ages indicate that
at Bignell Hill, Eustis, and Devils Den, Peoria
Loess deposition rates were at a maximum from
ca. 18,000 to ca. 14,000 cal yr B.P. (Roberts et
al., 2003), accompanied by upsection increases

in carbonate content at Eustis. On the basis of
both the uppermost OSL ages in Peoria Loess
reported by Roberts et al. (2003) and radiocar-
bon ages of the Brady Soil, Peoria Loess depo-
sition ended sometime between ca. 14,000 and
12,000 cal yr B.P.

The ages of Peoria Loess deposition of ca.
26,000 cal yr B.P. to ca. 12,000 cal yr B.P. in
Nebraska agree fairly closely with the inferred
times of Peoria Loess deposition elsewhere in
central North America. In eastern Colorado,
radiocarbon ages suggest Peoria Loess deposi-

Geological Society of America Bulletin, November/December 2008



Origin of loess in Nebraska

k. -
)O ~k—“v 0.6 )O
\ * New Zealand \
\Y (@) loess ©

Nebraska éz"q’ 0.4
Sand Hills

Alaskan \<>
loess
\\

P Nebraska
lllinois Western loess

loess lowa loess

Chinese
loess

*
@) White Colorado
oV 0.4 River dunes
%

Pierre
Shale

Nebraska
Sand Hills

\ \ \ \ \
o e o b o o o
o® & > o)

<« Ca0 + Mgo

<2 / %
97 o S
° o6 o
\ ’ \
K Q,QV S
Nebrask
% 0.4 Alaskan (Toéasz 2

loess l \

Chinese > <
loess  Western
lowa loess

0.2

Illinois
loess

L S ¥ : o R A S ¥ R
‘P (e} 4 © ‘P (<} 4 =
«~—[ALO, + Fe,0,]/2 ~— [ALO, + Fe,0 )2

Figure 18. Ternary diagrams of major elements for Peoria Loess in Nebraska compared with potential source sediments (left) and
loesses from other regions. Peoria Loess in Nebraska data from this study; Nebraska Sand Hills and Colorado dunes data from Muhs
(2004); White River Group data from Dickinson (1994); Pierre Shale data from Schultz et al. (1980); Illinois and western Iowa loess
data from Muhs and Bettis (2000) and Muhs et al. (2001); Alaskan loess data from Mubhs et al. (2003a); Chinese loess data from Gallet
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tion between ca. 25,000 and ca. 13,000 cal yr
B.P. (Muhs et al., 1999). Bettis et al. (2003a)
infer that loess deposition in western Iowa was
in progress by no later than ca. 29,000 cal yr
B.P. and had ended between ca. 16,000 and
ca. 14,000 cal yr B.P. Studies by Grimley et
al. (1998), Wang et al. (2003), and Muhs et al.
(2001) indicate that Peoria Loess deposition in
Illinois was in progress by ca. 29,000-25,000 cal
yr B.P. and continued until at least ca. 15,000—
13,000 cal yr B.P.

Thus, Peoria Loess, derived from diverse we return to after addressing the issue of sources
sources, has a remarkably similar chronology of Peoria Loess in Nebraska.
over an east-west distance of >1000 km (Colo-
rado to Illinois). Peoria Loess in Colorado was  Potential Sources of Peoria Loess in
derived from alluvium that may have had an  Nebraska
alpine glacier contribution plus Tertiary bed-
rock, whereas loess in Iowa and Illinois was  Qutwash from the Rocky Mountains via the
ultimately derived mainly from outwash of the  Platte River System
Laurentide ice sheet. Similar chronologies of Bryan (1945), Swineford and Frye (1951),
loess deposition with different provenances sug-  Winspear and Pye (1995), Pye et al. (1995),
gest a common, climate-related forcing, atheme  and Smalley (1995) all hypothesized or implied
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that Peoria Loess in Nebraska was derived
from glaciogenic silt of the Rocky Mountains
via the Platte River system. The North Platte
River drains the Sierra Madre and Medicine
Bow Mountains of eastern Wyoming, which
had small glaciers (Mears, 2001), but this river
also drains the extensively glaciated east side
of the Park Range of Colorado (Madole, 1991a,
1991b). Glaciers were also present in the Front
Range of Colorado, drained by the South Platte
River (Madole et al., 1998). Thus, a potentially
important transport pathway for glaciogenic
silt from the Rocky Mountains to Nebraska
would have been via the Platte River, down-
stream of the confluence of the South Platte and
North Platte Rivers (Fig. 2). Nevertheless, Flint
(1971) questioned whether sufficient sediment
could have been supplied via the Platte River
system to explain the thick loess in Nebraska.
Indeed, if the South Platte and Platte Rivers
carried glaciogenic silt from the Rocky Moun-
tains to Nebraska, thicker loess should have been
deposited in Colorado, but this is not the case
(Muhs et al., 1999). Furthermore, for Nebraska
one might expect compositional differences
between loess on the north and south sides of
the Platte River system, unless opposing winds
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of approximately equal strength and duration
had occurred throughout the last glacial period.

We do not consider the Platte River to have
been a major source, because loess is compo-
sitionally identical on both sides of the Platte
River system in Nebraska. Winspear and Pye
(1995) also recognized the similar composition
of loess on the north and south sides of the Platte
River system in Nebraska. They hypothesized
that this similarity could be explained by an
ancestral Platte River of the last glacial period.
In their model, this river flowed north of the
loess that is presently north of the Platte River
system. However, mapping by Swinehart et al.
(1994a) shows that terrace deposits border the
modern courses of the South Platte and Platte
Rivers in Nebraska for >600 km, and some of
these terraces are mantled with loess. Although
the terrace deposits are not directly dated, basal
radiocarbon ages of fan deposits that overlie the
terrace deposits range from ca. 11,000 to ca.
12,400 cal yr B.P. (Faulkner, 2002). These data
indicate that the Platte River system was situ-
ated at or near its present location for at least
the past ~11,000 cal yr and probably longer.
Thus, it seems unlikely that the Platte River sys-
tem had a significantly different course during

the last glacial period. Locally, the Platte River
system probably contributed some sediment to
the loess bodies, a conclusion also reached by
Mason (2001) and Aleinikoff et al. (2008), and
inferred from the spatial variability in loess par-
ticle size presented herein. We conclude from all
these considerations that loess in Nebraska, both
north and south of the Platte River system, had
a common source or sources that lay upwind of
both loess bodies.

QOutwash from the Laurentide Ice Sheet via
the Missouri River

The Missouri River drained the Laurentide ice
sheet and certainly was an important source of
loess in western Iowa (Ruhe, 1969; Ruhe et al.,
1971; Muhs and Bettis, 2000, 2003). The Mis-
souri River has been hypothesized as a source of
loess in Nebraska and Kansas by Bryan (1945),
Swineford and Frye (1951), and Flint (1971,
p- 259). The chronology of glacial advances in
Iowa and South Dakota indicates that the Des
Moines Lobe and the James Lobe were advanc-
ing southward (Bettis et al., 1996) during the
time of maximum loess deposition in Nebraska,
which permits the possibility of a glacial out-
wash source from the Missouri River. Distance
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trends of K/Rb, Ti/Nb, and carbonate content
indicate an influence of the Missouri River
on Peoria Loess composition in northeastern
Nebraska, within ~30 km of the valley bluff line.
However, even in those loess sections of eastern
Nebraska that are adjacent to the Missouri River
(Bellevue and Plattsmouth), there is evidence for
only partial contributions from this source. Such
local contributions, however, are also apparent
in the thickness data of Swinehart et al. (1994a),
Mason (2001), and Mason et al. (2007), and in
the isotopic data of Aleinikoff et al. (2008).
Nebraska Sand Hills

The Nebraska Sand Hills and smaller, nearby
dune fields have long been hypothesized to
have played an important role for loess origins
in Nebraska and Kansas (Lugn, 1939, 1968;
Condra et al., 1947; Reed, 1968; Wright, 1970;
Mason et al., 1999, 2003a; Mason, 2001; Miao
et al., 2005, 2007; Jacobs and Mason, 2007).
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The earliest studies were not specific about the
role that this dune field might have played in
loess genesis. More recent work, including that
of Mason et al. (1999, 2003a), Mason (2001),
and all later studies, have emphasized that
dune fields can act as “surfaces of transport,”
whereby silt-sized particles can be brought into
suspension by sand particles that are moving
by saltation.

Nevertheless, many workers have argued that
active dune fields can actually generate silt-
sized paricles, as well as transport them. Silt-
sized particles can, in principle, be generated
from sand-sized particles under strong winds
via abrasion and ballistic impacts on the basis of
theoretical considerations as well as laboratory
simulations and field evidence (Whalley et al.,
1982; Dutta et al., 1993; Pye, 1995; Wright
et al., 1998; Wright, 2001a, 2001b; Smith et al.,
2002). Muhs et al. (1997) and Muhs (2004) point

out that dune sand of the Nebraska Sand Hills
is relatively mature mineralogically in com-
parison with most or all source sediments. One
hypothesis for explaining these observations is
size reduction of feldspars by ballistic impacts,
resulting in quartz-sand enrichment (Dutta et al.,
1993). Subsequent eolian deflation of silt-sized
feldspars would then leave a quartz-sand-rich
residue in the Nebraska Sand Hills. Experimen-
tal results also show that quartz-silt-particle pro-
duction from sand particles via eolian abrasion
is surprisingly efficient, although not as efficient
as fluvial abrasion (Wright et al., 1998, their
Table 3). Other workers have reported evidence
for silt production in dune fields or in other sedi-
ments as a result of chemical weathering (Nahon
and Trompette, 1982; Pye, 1983). However,
these latter studies derive from observations of
dune sand and other sediments in humid, tropi-
cal environments.
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If the Nebraska Sand Hills had been an impor-
tant particle contributor to the mass of Peoria
Loess, there should be compositional similarities
between Nebraska Sand Hills particles and loess.
However, both mineralogy and geochemistry
indicate little or no overlap in the composition of
the Nebraska Sand Hills and Peoria Loess. Iso-
topic data from K-feldspars also indicate little
influence from the Nebraska Sand Hills on loess
composition (Aleinikoff et al., 2008). Contribu-
tions from the Nebraska Sand Hills are apparent
in the particle size data presented here, but may
have been limited to a very narrow band close to
the dune field, where local enrichments of sand-
sized quartz took place.

Pierre Shale (Cretaceous)

Interestingly, most previous workers do not
identify Pierre Shale as a particularly important
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source of loess. However, Pierre Shale occurs
extensively upwind of Peoria Loess in Nebraska
(Fig. 22), and our observations in northwest-
ern Nebraska and southwestern South Dakota
indicate that it is commonly free of overly-
ing Quaternary sediments. Muhs et al. (1999)
hypothesized that Pierre Shale may have been
a contributor to the high clay content of some
Peoria Loess in Colorado. Pierre Shale is rich
in smectite (Schultz et al., 1980), also the domi-
nant clay mineral in Peoria Loess of Nebraska.
However, a more definitive mineralogical argu-
ment that supports a Pierre Shale contribution is
the presence of dolomite. Dolomite was found
in most Peoria Loess samples we analyzed,
across the east-west extent of loess in Nebraska
and on both sides of the Platte River. The pres-
ence of dolomite in loess on both sides of the
Platte River and significantly west of the Mis-

souri River precludes the rivers themselves as
the only sources, based on paleowind consider-
ations discussed earlier. Pierre Shale is the only
other loess source of which we are aware that
contains dolomite. However, with one excep-
tion, K/Rb in Pierre Shale is <230, and most
shale samples have K/Rb <200. In addition,
most of the Pierre Shale samples we studied
have Ti/Nb >300. These ratios fall outside the
ranges of most Peoria Loess in Nebraska. Thus,
we consider that Pierre Shale probably was a
minor source of loess.

Tertiary Siltstone (White River Group,
Arikaree Group, Pliocene Beds)

Geochemical evidence we have accumulated
here and isotopic data in Aleinikoff et al. (2008)
indicate to us that most loess in Nebraska is of
nonglaciogenic origin, derived primarily from
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Tertiary siltstones and silt-rich sediments such
as the White River Group, Arikaree Group,
and the Pliocene beds. Of these, we favor the
White River Group as the most important con-
tributor. Arikaree Group rocks are, on aver-
age, much more lithified and less erodible than
White River Group rocks. This characteristic
explains, at least in part, why Arikaree Group
rocks form the prominent upland of the Pine
Ridge area, whereas rocks of the White River
Group form the lower-elevation Badlands area
(Fig. 22). Furthermore, particle size analyses by
Sato and Denson (1967) show that sediments
of the White River Group are much more silt-
rich (~77%—68%) than are rocks of the Arika-
ree Group (~32%). It is also worth noting that
Jacobs and Mason (2007) report that the glass
content of deep Peoria Loess is low (~5%—18%)
in comparison with the glass content of the
White River Group (~53%) or even the Arikaree
Group (~28%), at least in the very fine sand frac-
tions (Swinehart et al., 1985). If these data are
also representative of the silt fractions as well
as the most easily eroded facies of these rocks
in general, they suggest that neither the White
River Group nor the Arikaree Group rocks are
sole sources of Peoria Loess in Nebraska. On
the other hand, glass particles could be easily
reduced in size during transport by saltation,
which complicates matters. Mason (2001) pro-

Muhs et al.

poses the silt-rich facies of the Pliocene beds as
a potential source, and our geochemical results
and the isotopic results of Aleinikoff et al. (2008)
show that this is a possibility, which we discuss
in more detail below.

Evaluation of Loess Transport Pathway
Models

Our studies of Peoria Loess in Nebraska
support one of the models presented by Mason
(2001), who distinguished the “immediate”
source of loess from the “ultimate” source of
loess in this model. The immediate source of
loess in this context is the geographic area where
particles were last entrained before deposition in
the present loess body. The ultimate source of
loess refers to provenance, i.e., the rock or sedi-
ment body where the particles originated before
transport. The Nebraska Sand Hills may be the
immediate source of the loess, but the ultimate
source or sources lay northward, primarily in the
erodible rocks of Pierre Shale, the White River
Group, the Arikaree Group, and Pliocene eolian
sediments (Fig. 22). With Cretaceous and Ter-
tiary rocks as the ultimate source of the loess,
and the Nebraska Sand Hills as the immediate
source, there is an analogy with the glaciated
part of the North American Midcontinent. In
this region, glacial tills were the most important

ultimate source of the loess particles, but river
valleys that drained the glaciers were the imme-
diate source (Grimley, 2000).

The mineralogical, geochemical, and isotopic
data presented here and in Aleinikoft et al. (2008)
show that the Nebraska Sand Hills region, despite
its importance as an immediate source, has prob-
ably added little mass to the loess in Nebraska
other than addition of quartz-dominated sand to
a narrow zone directly downwind of the dunes.
Nevertheless, the relatively coarse texture of Peo-
ria Loess in Nebraska, as demonstrated by high
amounts of coarse silt, suggests that much of the
silt transport was not likely to have taken place
in high suspension over hundreds of kilome-
ters (Pye, 1987). As outlined by Mason (2001),
however, cumulative long-distance transport of
coarse silts in low suspension could have taken
place through a series of relatively short trans-
port events from distal outcrops of the Tertiary
rocks and sediments, through the Nebraska Sand
Hills, and ultimately to the loess hills and plains
in the southeastern half of Nebraska (Fig. 23). If
the Nebraska Sand Hills was an active dune field
during the last glacial period, as some evidence
seems to indicate (Loope et al., 1995; Muhs et
al., 2000; Goble et al., 2004), silt particles could
have been kept in suspension easily because
saltating sand grains would have re-suspended
silt grains at the surface. Impact threshold shear
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velocities for fine particles are much lower than
fluid threshold shear velocities (Pye, 1987).
Thus, even modest wind velocities in an active
dune field could keep coarse silt particles in
motion such that cumulative transport distances
could amount to hundreds of kilometers. Fine
particle coatings and bands (“clay lamellae”),
common in the Nebraska Sand Hills, may be
remnants of past silt and clay transport through
this large dune field.

It is more difficult to evaluate Mason’s (2001)
hypothesis of Pliocene beds in Nebraska as a
source of loess. K/Rb and Ti/Nb in Peoria Loess
of Nebraska overlap those in the silt and fine
sand fraction of the Pliocene beds, which cer-
tainly permits this possibility. More importantly,
Pb isotopic compositions of K-feldspars in Peo-
ria Loess and Pliocene silts overlap (Aleinikoff
et al., 2008). Mineralogical data suggest, how-
ever, that the Pliocene beds are not likely to have
been the only source, as they lack dolomite and
have little or no calcite, whereas both these min-
erals occur in Peoria Loess. Mason (May 2007,
written commun.) suggested a variation on his
original hypothesis, which is that Pliocene beds
supplied both sand to the Nebraska Sand Hills
and silt to Peoria Loess. This intriguing possibil-
ity can be evaluated with isotopic, mineralogi-
cal, and geochemical data. If Pliocene beds also
supplied sand to the Nebraska Sand Hills, there
should be compositional similarities. How-
ever, the Pb isotopic composition of sand-sized
K-feldspars from the Pliocene beds has only
minimal overlap with that of sand-sized K-feld-
pars in the Nebraska Sand Hills (Aleinikoff et
al., 2008). Furthermore, Nebraska Sand Hills
sands are much more mature mineralogically
than sands in the Pliocene beds (Muhs et al.,
1997; Muhs, 2004). Differences in mineralogi-
cal maturity do not, per se, rule out a genetic
relation between two sand bodies. However, in
this case the degree of maturity of the Nebraska
Sand Hills suggests a longer history than that of
the period of deposition of Peoria Loess. Thus,
we favor Mason’s (2001) first model.

“Glacial” Loess and “Desert” Loess

There has been considerable debate over the
concepts of “glacial” loess versus “desert” (i.e.,
nonglacial) loess (see reviews in Pye, 1987, 1995;
Tsoar and Pye, 1987; Livingstone and Warren,
1996; Muhs and Bettis, 2003). Glacial loess is
considered to be eolian particles that have been
reduced to silt size primarily by glacial grinding.
Desert loess is eolian sediment whose silt-sized
particles were produced dominantly by other pro-
cesses. Some investigators, particularly I.J. Smal-
ley and coworkers, argue that glacial grinding is
the only mechanism that can produce significant
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amounts of silt-sized particles (Smalley, 1966,
1995; Smalley and Vita-Finzi, 1968; Smalley and
Krinsley, 1978). Other researchers conclude that
silt-sized particles can be produced by a variety
of processes, including frost weathering, salt
weathering, chemical weathering, and fluvial
and eolian comminution (Nahon and Trompette,
1982; Whalley et al., 1982; McTainsh, 1987;
Dutta et al., 1993; Wright et al., 1998; Wright,
2001a, 2001b; Smith et al., 2002).

In the glacial-loess—versus—desert-loess
debate, there is little or no mention of silt par-
ticle inheritance from sedimentary rocks. Nota-
ble exceptions to this are studies in Argentina,
where an Andean volcaniclastic source has
been recognized (Zarate and Blasi, 1993), and
Australia, where siltstones may be the ultimate
source of much of the silt-sized dust in arid
basins (McTainsh, 1989). Silt is abundant in the
sedimentary rock record. Indeed, Blatt (1987)
estimates that fully half of the detrital quartz in
the world’s sedimentary rocks consists of silt-
sized particles. In the case of Peoria Loess in the
Great Plains of Nebraska, our data and those of
Aleinikoff et al. (2008) indicate that sedimen-
tary rock is probably the most important source
of silt-sized particles.

Comparison of Loess Records in Nebraska
with Paleoclimate Models

One of the most remarkable features of the
last glacial period is that the Earth was a dustier
planet. There are good records of greater eolian
particle transport and accumulation during the
last glacial period in the deep ocean and in polar
ice caps (see reviews in Mahowald et al., 1999;
Kohfeld and Harrison, 2000, 2001; Harrison et
al., 2001; Kohfeld and Tegen, 2007). Mahow-
ald et al. (1999) summarized the hypothesized
causes of the last glacial increases in dust flux
and accumulation. These include higher wind
velocities, a reduced intensity of the hydrologi-
cal cycle (thus allowing dust to stay in transit
longer), and reduced soil moisture and vegeta-
tion cover in source regions. Increased glacio-
genic silt can be added to this, but does not apply
to Nebraska, on the basis of results shown here.

Numerous attempts have been made to model
the generation, transport, and deposition of
dust on a global scale, both for modern condi-
tions and the last glacial period, summarized by
Harrison et al. (2001). Early models attempted
to simulate last glacial dust production using
changes in wind intensity and the hydrological
cycle only and did not succeed in reproducing
the observed last-glacial increases in dust accu-
mulation in ice cores and deep-sea cores. A later
model incorporated all of the earlier factors plus
decreased soil moisture and increased source

areas, owing to changes in vegetation type and
amount of cover (Mahowald et al., 1999). Better
agreement of this study’s results with the geo-
logic record confirmed that climate change alone
(wind strength and intensity of the hydrologic
cycle) was insufficient to simulate the observed
increases in dust. Nevertheless, the results of
Mahowald et al. (1999) showed some disagree-
ments with geologic records as well. Central
North America in the 1999 model does not
appear as a significant source of dust during the
last glacial period. However, a refined version
of the model used by Mahowald et al. (1999)
shows that the northern Great Plains region of
central North America could indeed have been a
significant source of nonglacial loess during the
last glacial period (see Mahowald et al., 2000,
their Fig. 8a). Results of the present study and
the companion paper by Aleinikoff et al. (2008)
are in agreement with these new results.

Results of the present study, as well as those of
Swinehart et al. (1994a) and Mason (2001), indi-
cate paleowinds from the northwest in Nebraska
during the last glacial period. A mesoscale
model (Polar MM5) presented by Bromwich et
al. (2005) sheds some new light on paleowinds
in midcontinental North America during the last
glacial period. Polar MMS is attractive for mod-
eling paleowinds above and near the Laurentide
ice sheet during the last glacial period, because
the model has simulated modern katabatic winds
over Greenland successfully (Bromwich et al.,
2001). Results of summer climate simulations
from Polar MMS for the last glacial period in
North America indicate easterly and northeast-
erly katabatic winds near the ice sheet (Brom-
wich et al., 2005). However, the zone affected
by katabatic winds is limited to an area within a
few model grid points (estimated to be less than
~200 km) south of the ice sheet. In the areas to
the south of this zone, winds are simulated to
have been much more variable with a greater
frequency of westerly winds. Mahowald et al.
(2006) simulated west to east transport of dust
during the last glacial period in their model, in
good agreement with the loess record. However,
these investigators also pointed out that easterly
winds were the average condition (i.e., during
less dusty periods) during the last glacial period
(Mahowald et al., 2006, p. 17). It is possible that
the average, easterly winds of the last glacial
period apply to a zone fairly close to the Lau-
rentide ice sheet. Much of the area where Peoria
Loess was deposited in Nebraska is greater than
200 km south of the ice sheet (Fig. 1). There-
fore, some of the apparent conflict in loess pal-
eowinds versus climate models, noted by Muhs
and Bettis (2000), is not a failure of the models
nor a misinterpretation of the loess records but a
question of scale and geography.
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Figure 24. (A) MODIS image acquired aboard the Terra satellite on 18 April 2004, showing dust plumes in eastern Colorado, western
Kansas, and southern Nebraska, which developed from high-velocity winds under the influence of a strong low-pressure system and cold
front. Image courtesy of NASA and Liam Gumley, Space Science and Engineering Center, University of Wisconsin, Madison. Accessed from
http://earthobservatory.nasa.gov; image identification is 12078. Also shown are the three westernmost loess sections studied or referred to
herein. (B) Synoptic-scale weather conditions showing isobars (gray lines), major fronts, and high- and low-pressure centers over the United
States on 18 April 2004, when the dust plumes in panel A were imaged by MODIS. Map redrawn from NOAA archives at http://www.hpc.
ncep.noaa.gov/dailywxmap/index.html. MODIS—moderate resolution imaging spectroradiometer.
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In addition, however, both Bromwich et al.
(2005, p.3334) and Mahowald et al. (2006,
p- 17) note that frequency, magnitude, and sea-
sonality of loess transportation may also be fac-
tors, a hypothesis also suggested by Muhs and
Bettis (2000). In the Polar MMS5 model presented
by Bromwich et al. (2005), precipitation in the
central Great Plains is simulated to have been
dominant in summer, a situation that would not
enhance loess particle entrainment or transport
during this season. Increased interannual vari-
ability may have played a role, with some sum-
mers having been drier than others (Bromwich
et al., 2005). On average, however, Polar MM5
simulates springtime (March through May) to
have been relatively dry during the last glacial
period. Furthermore, the last-glacial spring sea-
sons in the Great Plains are simulated to have
experienced occasional passage of synoptic-
scale low-pressure systems. In Polar MMS5, these
low-pressure systems have little precipitation
associated with them but are characterized by
high-velocity winds at lower levels. Moreover,
this springtime cyclonic circulation would have
converged with the katabatic wind flow from the
Laurentide ice sheet, enhancing vertical particle
motion to levels at which westerly winds were
dominant. Bromwich et al. (2005) point out that
springtime would have been warm enough for
source sediments to thaw, but also a time before
the summer precipitation maximum. The sce-
nario proposed by Bromwich et al. (2005) may
also explain the similar chronology of loess
deposition in the Great Plains and Iowa and Illi-
nois, farther east, because both areas would have
been affected by similar synoptic-scale condi-
tions during springtime. A spring dust storm in
eastern Colorado, on 18 April 2004, was caused
by strong winds associated with a low-pressure
system but no rain (Fig.24). This may be a
modern analog for the Bromwich et al. (2005)
model for the last glacial period.

CONCLUSIONS

Peoria Loess is extensive and thick in the
central Great Plains region of Nebraska.
Radiocarbon and OSL ages indicate that Peo-
ria Loess was deposited during the last glacial
period, ca. 25,000 to ca. 13,000 cal yr B.P,
similar to other parts of North America. In
some parts of central and western Nebraska,
loess thicknesses are great, mass accumulation
rates were high, and geochemical proxies for
carbonate content were also high, indicating
little or no syndepositional leaching.

Particle size trends (sand, fine silt, and clay)
indicate that paleowinds from the northwest
deposited Peoria Loess in Nebraska during the
last glacial period. The sedimentological trends
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indicate that the source or sources of Peoria
Loess in Nebraska lay to the northwest of the
main loess body, in agreement with thickness
data and inferred paleowinds presented by
Mason (2001).

Mineralogical and geochemical data indicate
that the main sources of loess in Nebraska were
probably the White River Group, the Arikaree
Group, Pliocene sediments, and perhaps Pierre
Shale. These data are consistent with comple-
mentary isotopic data presented in a compan-
ion paper (Aleinikoff et al., 2008). The Platte
River system and the Nebraska Sand Hills, long
thought to have been the sources of Peoria Loess,
probably added very little to the accumulation
of loess except in immediately adjacent areas.
A model presented by Mason (2001), however,
shows that the Nebraska Sand Hills probably
served an important function as a sediment
transport pathway, allowing relatively coarse
loess to be transported hundreds of kilometers
from its source region. Our studies agree with
this sequence of events. The Missouri River may
have provided some glaciogenic silt to localities
immediately west or south of the river, but little
elsewhere in the state.

Previous climate-dust models did not simu-
late significant dust generation in the northern
Great Plains during the last glacial period. How-
ever, a refined model presented by Mahowald et
al. (2006) does simulate a significant northern
Great Plains dust source, in agreement with our
results. A mesoscale paleoclimate model for
North America presented by Bromwich et al.
(2005) suggests that Peoria Loess in Nebraska
may have been deposited by westerly winds as
low-pressure systems passed south of the Lau-
rentide ice sheet during relatively dry spring
seasons. Our results are consistent with this
model, and satellite observations suggest that
the process may occur even today.
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